

Overview on Emulgel for Topical Applications: A Novel Approach to Drug Delivery and Skin Permeation

Sumit Kumar B. Kirtane*, Amol. U.Gayke, Pradyumana Ige SND College of Pharmacy Babhulgaon, Yeola, Nashik-423401

*Corresponding Author

Email Id: sumitkumarkirtane04@gamil.com

ABSTRACT

Provide a concise overview of emulgels as an innovative drug delivery system for topical applications. Highlight key aspects such as its unique composition, advantages over traditional topical formulations, and its potential to enhance drug permeation through the skin. Conclude with the importance of emulgels in improving therapeutic outcomes in dermatology and pain management.

Keywords- Emulgel, Topical drug delivery, Skin permeation, Drug release, Therapeutic efficacy, Skin pharmacokinetics.

INTRODUCTION

Introduce the significance of topical drug delivery and its advantages for localized treatment with minimal systemic effects. Emulgel is a thermodynamically stable formulation with low interfacial tension that is made by combining a surfactant and a co-surfactant and has several properties such as increased permeability and good thermodynamic stability. Emulgel has a dual control and a sustained release pattern. Emulgel improves bioavailability as well as patient compliance. The pH, viscosity, particle size, zeta potential, drug content, stability study, skin irritation test, and other properties of the prepared formulation are evaluated. Briefly discuss limitations of conventional topical formulations, such as ointments and creams, in terms of drug solubility, stability, and permeation. Emphasize the novelty of emulgels in overcoming these limitations, providing an ideal balance between hydrophilic and lipophilic components. Opical drug administration is a common treatment method for both local and systemic conditions. In the topical delivery system, the drug is absorbed by the skin and reaches the site of action to provide a therapeutic effect. The rate of drug release from a topical preparation is dependent directly on the physiological features of the carrier.

Physiology of skin

The skin is treated with topical formulations. As a result, a basic understanding of the skin's physiology and function is essential for developing topical dosage forms. The human skin covers about 2m² of surface area and provides one-third of systemic circulation through the skin.⁵ Per square centimeter of human skin, there are approximately 200-300 sweat ducts and 40-50 hair follicles. The human skin pH ranges between 4.7 to 5.7.⁶

Emulgel: An Overview What is an Emulgel?

An emulgel is essentially a gel-based emulsion, where an emulsion (either oil-in-water or water-in-oil) is incorporated into a gel matrix. This allows the emulgel to maintain the

structural integrity of a gel while holding lipid-based ingredients, enhancing both the stability and application properties.⁷

Advantages of Emulgels⁸⁻⁹

- 1) **Improved Stability**: Emulgels are less prone to phase separation compared to plain emulsions, offering enhanced stability.
- 2) **Enhanced Drug Delivery**: The dual-phase system provides better penetration and prolonged release by enhancing drug solubility and allowing it to reach deeper layers of the skin.
- 3) **Non-Greasy and Easily Washable**: The gel matrix makes the emulgel non-greasy, improving patient compliance and making it suitable for regular application.
- 4) **Controlled Release**: By incorporating both hydrophilic and hydrophobic drugs, emulgels provide a more controlled release profile, ensuring sustained therapeutic action.
- 5) **Skin Moisturization**: Emulgels hydrate the skin and are often preferred for conditions that benefit from moisturization, like dry skin and eczema.

Key Components of Emulgels¹⁰

- 1) **Active Ingredient (API)**: The therapeutic agent meant to deliver the desired effect (e.g., anti-inflammatory, analgesic, antibacterial).
- 2) **Oil Phase**: Typically consists of oils (like light liquid paraffin or isopropyl myristate) that improve skin penetration, moisturization, and drug solubility.
- 3) **Aqueous Phase**: Water-based phase that helps in dispersing hydrophilic ingredients, maintaining the hydration of the formulation, and ensuring patient comfort.
- 4) **Emulsifying Agents**: Surfactants (e.g., Tween 20, Span 20) stabilize the emulsion by reducing the surface tension between oil and water phases, keeping them from separating.
- 5) **Gelling Agents**: These are usually polymers like Carbopol, HPMC (hydroxypropyl methylcellulose), or xanthan gum, which give the emulgel its gel-like consistency, enhancing stability and spreadability.
- 6) **Penetration Enhancers**: Ingredients like isopropyl myristate and propylene glycol improve the drug's ability to permeate through the skin barrier.
- 7) **Preservatives and Stabilizers**: Compounds such as methylparaben and propylparaben are added to prevent microbial contamination and enhance shelf life.

Composition and Structure

Explain that an emulgel is a combination of an emulsion (either oil-in-water or water-in-oil) and a gel matrix, providing both emollient and hydrating properties. Describe its biphasic nature, which enhances drug solubility and permeation across the skin barrier.¹¹

Types of Emulgels

- Oil-in-Water Emulgel: Explain its properties and typical uses.
- Water-in-Oil Emulgel: Discuss when it's preferred, especially for lipophilic drugs.

Properties of Emulgels

- Thermodynamic Stability: Resistance to temperature variations and phase separation.
- **Drug Loading Capacity:** Enhanced due to both lipophilic and hydrophilic phases.
- Viscosity and Spreadability: Importance in user acceptability and skin adherence.

Benefits over Other Dosage Forms¹²⁻¹³

Discuss how emulgels surpass other dosage forms in:

- Enhanced Penetration: Better penetration compared to ointments, creams, and lotions.
- Controlled Release: Ability to control drug release and provide sustained effects.
- Non-Greasy Texture: Increases patient compliance, especially in dermatology.

Skin Structure and Permeation Mechanism Skin Structure

Provide a brief overview of skin layers, including stratum corneum, epidermis, and dermis. Include an illustrative image of skin layers showing the pathway of topical drug delivery.¹⁴

Permeation Mechanism

Mechanism of Drug Release and Skin Permeation¹⁵

- **Hydration of Stratum Corneum**: The gel base helps hydrate the stratum corneum (outermost layer of skin), which softens it and makes it more permeable.
- **Micelle Formation and Drug Release**: The emulsion droplets within the gel can act as reservoirs for the drug. Over time, the drug diffuses from the emulsion droplets into the skin, providing sustained release.
- Enhanced Penetration via Lipophilic Pathways: Lipophilic ingredients in the oil phase can merge with skin lipids, creating pathways that facilitate deeper penetration.

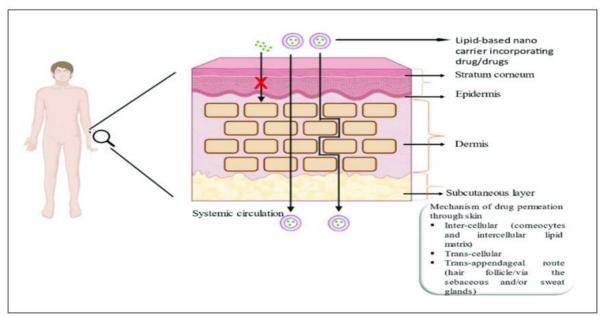


Fig. 1: Structure of the skin depicting different mechanisms of drug permeation through it.

MATERIALS AND METHOD¹⁶⁻¹⁷

Materials

List all key ingredients used in emulgel formulation, including specific chemicals, polymers, surfactants, and stabilizers.

Method of Preparation¹⁸

Outline the step-by-step preparation process, including:

- 1) **Preparation of Emulsion Phase**: How to achieve desired stability and consistency.
- 2) Gel Preparation: Selecting and preparing gelling agents.
- 3) **Incorporation of Emulsion into Gel Matrix**: Techniques to achieve homogeneity.
- 4) **Final Homogenization**: Achieving the final emulgel structure.

Table 1: Formulation table for Emulgel, showing typical ingredients and their functions

Ingredient	Quantity (% w/w)	Function		
Active Ingredient (API)	1-5	Provides therapeutic effect		
Oil Phase Components				
Light Liquid Paraffin	5-10	Oil phase component, emollient		
Isopropyl Myristate	2-4	Enhances penetration, stabilizer		
Surfactants				
		Emulsifying agent (for O/W		
Tween 20 (or Tween 80)	1-3	emulsion)		
Span 20 (or Span 80)	1-3	Co-emulsifying agent		
Gel Phase Components				
Carbopol 940	0.5-2	Gelling agent		
Neutralizing Agent				
		pH adjuster, gelling agent		
Triethanolamine	0.5-1	neutralizer		
Aqueous Phase Components				
Purified Water	Up to 100	Solvent, hydration of gel		
Other Excipients				
		Humectant, enhances skin		
Propylene Glycol	5-10	penetration		
Methylparaben	0.2	Preservative		
Propylparaben	0.1	Preservative		
Fragrance	q.s.	Improves patient acceptability		

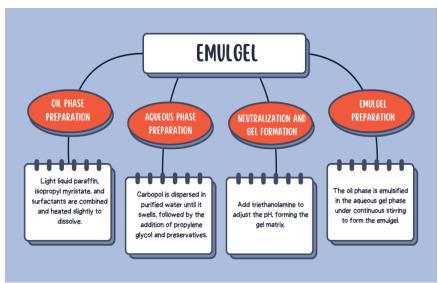


Fig 2: quantities and specific ingredients may vary based on the drug's characteristics and formulation requirements.

Evaluation Test¹⁸⁻²²

1. Physical Appearance

- **Objective**: To observe the physical characteristics like color, homogeneity, texture, and phase separation.
- **Method**: Visually inspect and document any changes over time in appearance, phase separation, or presence of air bubbles.

2. pH Measurement

- **Objective**: To ensure the emulgel has a skin-compatible pH range (typically between 5.0 and 7.0).
- **Method**: Use a calibrated pH meter to test samples at room temperature.

3. Spreadability

- **Objective**: To measure how easily the emulgel can be applied to the skin.
- **Method**: Place a small amount of emulgel between two glass slides and measure the spread diameter or the force required to spread it.

4. Viscosity Measurement

- **Objective**: To ensure consistency and uniform application.
- **Method**: Use a viscometer to measure viscosity at various shear rates to understand rheological properties.

5. Drug Content Uniformity

- **Objective**: To confirm that the drug is evenly distributed throughout the formulation.
- **Method**: Use UV-Visible spectrophotometry or HPLC to measure the concentration of the active ingredient in multiple samples.

6. In vitro Drug Release Study

- **Objective**: To evaluate the release profile of the drug from the emulgel.
- Method: Perform a diffusion study using Franz diffusion cells with a dialysis membrane.
 Collect samples at intervals and measure drug concentration via spectrophotometry or HPLC.

7. Skin Permeation Test

- **Objective**: To assess how well the emulgel facilitates drug permeation through the skin.
- **Method**: Use excised animal or synthetic skin in a Franz diffusion cell setup. After a set period, analyze the amount of drug permeated through the skin.

8. Stability Studies

- **Objective**: To confirm the stability of the emulgel over time under various conditions.
- **Method**: Store samples at room temperature, refrigeration, and accelerated conditions (40°C/75% RH) for 1-3 months, checking periodically for changes in pH, viscosity, spreadability, and drug content.

9. Irritancy Test (if applicable)

- **Objective**: To assess the safety and irritancy potential of the formulation on skin.
- **Method**: Apply a small amount of emulgel on animal skin or a non-irritated patch of human skin and observe for any signs of redness, itching, or irritation.

Topical Applications of Emulgels

Discuss the various therapeutic applications, including:

- **Dermatology**: Treatment of skin infections, inflammation, and acne.
- Analgesic Applications: Localized pain relief and anti-inflammatory effects.
- Antifungal and Antibacterial Uses: Sustained release of active agents for infections

Table 2: These products are widely used for skin issues like acne, inflammation, pain relief, and infections, highlighting the versatility of emulgels in treating a range of conditions.

Product Name	Active Ingredient	Indication	Manufacturer
Voltaren	Diclofenac	Anti-inflammatory, pain	GlaxoSmithKline
Emulgel		relief	(GSK)
Daktarin	Miconazole	Antifungal (skin	Janssen
Emulgel		infections)	Pharmaceuticals
Metrogyl	Metronidazole	Anti-acne, antibacterial	Unique
Emulgel			Pharmaceuticals
Clindac-A	Clindamycin	Acne treatment	Galderma
Emulgel			
Clinagel	Clindamycin	Acne treatment	Stiefel India Pvt. Ltd.
Nadicin Emulgel	Nadifloxacin	Anti-acne, antibacterial	Cipla
Ketoral Emulgel	Ketoconazole	Antifungal (skin	Cipla
		infections)	
Aziderm	Azelaic Acid	Acne treatment	Micro Labs Ltd.
Emulgel			
Flector Emulgel	Diclofenac	Anti-inflammatory, pain	IBSA Institut
	Epolamine	relief	Biochimique
Clearasil Ultra	Benzoyl Peroxide	Acne treatment	Reckitt Benckiser
Nicotinamide	Nicotinamide	Anti-inflammatory for	Various manufacturers
Gel		acne	

CONCLUSION

Summarize the advantages of emulgels as a topical drug delivery system. Emphasize their potential in enhancing drug stability, permeation, and patient compliance, positioning them as a valuable alternative in dermatological and pain management applications.

REFERENCES

- 1) Umar AK, Butarbutar M, Sriwidodo S, Wathoni N. Film-Forming Sprays for Topical Drug Delivery. Drug Des Devel Ther. 2020 Jul 22;14:2909-2925.
- 2) orec B, Miklavčič D, Pavšelj N, Préat V. Active enhancement methods for intra- and transdermal drug delivery: a review. *Zdr Vestn.* 2013;82(5):339–356.
- 3) Cristiano MC, Cilurzo F, Carafa M, Paolino D. Innovative vesicles for dermal and transdermal drug delivery In: *Lipid Nanocarriers for Drug Targeting*. Elsevier; 2018:175–197.
- 4) Sharadha M, Gowda DV, Vishal Gupta N, Akhila AR. An overview on topical drug delivery system updated review. *Int J Res Pharm Sci.* 2020;11(1):368–385.
- 5) Kaur J, Kaur J, Jaiswal S, Gupta G. Recent advances in topical drug delivery system. *Pharm Res.* 2016;6(7).
- 6) Leppert W, Malec–Milewska M, Zajaczkowska R, Wordliczek J. Transdermal and topical drug administration in the treatment of pain. *Molecules*. 2018;23(3):681.
- 7) Mahmood A, Erum A, Tulain UR, Malik NS, Saleem A, Alqahtani MS, Malik MZ, Siddiqui M, Safdar A, Malik A. Exploring the gelling properties of Plantago ovata-based Arabinoxylan: Fabrication and optimization of a topical emulgel using response surface methodology. PLoS One. 2023 Aug 22;18(8):e0290223.
- 8) Zhang Z, Tsai PC, Ramezanli T, Michniak-Kohn BB. Polymeric nanoparticles-based topical delivery systems for the treatment of dermatological diseases. Wiley

- Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology. 2013. May;5(3):205–18
- 9) Panwar A, Upadhyay N, Bairagi M, Gujar S, Darwhekar G, Jain D. Emulgel: A review. Asian J Pharm Life Sci. 2011;2231:4423.
- 10) Panwar, Aakash & Gandhi, Sanyam & Sharma, Ajay & Upadhyay, Navaldeep & Bairagi, Mohan & Gujar, Sonal & Darwhekar, Gajanan & Jain, Dinesh. (2011). Emulgel: A review. Asian J. Pharm. Life Sci.. 1. 333-343.
- 11) Sah, Shailendra & Badola, Ashutosh & Nayak, Bipin. (2017). Emulgel: Magnifying the application of topical drug delivery. Indian Journal of Pharmaceutical and Biological Research (IJPBR). 5. 25-33. 10.30750/ijpbr.5.1.4.
- 12) Bhowmik D, Gopinath H, Kumar PB, Duraivel S, Kumar KPS. Recent advances in novel topical drug delivery system. Pharma innovation 2012;1:12-31.
- 13) Ashara KC, Paun JS, Soniwala MM, Chavada JR, Mori NM. Micro-emulsion based emulgel: a novel topical drug delivery system. Asian Pac J Trop Dis journal 2014;4:27-32.
- 14) Slominski AT, Slominski RM, Raman C, Chen JY, Athar M, Elmets C. Neuroendocrine signaling in the skin with a special focus on the epidermal neuropeptides. Am J Physiol Cell Physiol. 2022 Dec 1;323(6):C1757-C1776.
- 15) Souto EB, Fangueiro JF, Fernandes AR, Cano A, Sanchez-Lopez E, Garcia ML, Severino P, Paganelli MO, Chaud MV, Silva AM. Physicochemical and biopharmaceutical aspects influencing skin permeation and role of SLN and NLC for skin drug delivery. Heliyon. 2022 Feb 11;8(2):e08938.
- 16) Khullar R, Kumar D, Seth N, Saini S. Formulation and evaluation of mefenamic acid emulgel for topical delivery. Saudi Pharm J. 2012 Jan;20(1):63-7.
- 17) Bonacucina G., Cespi M., Palmieri G.F. Characterization and stability of emulsion gels based on acrylamide/sodium acryloyldimethyl taurate copolymer. AAPS PharmSciTech. 2009;2:10.
- 18) Gupta A., Mishra A.K., Singh A.K., Gupta V., Bansal P. Formulation and evaluation of topical gel of diclofenac sodium using different polymers. Drug Invention Today. 2010;2:250–253.
- 19) Sunil Kumar Yadav, Manoj Kumar Mishra, Anupamaa Tiwari, Ashutosh Shukla. Emulgel: a new approach for enhanced topical drug delivery. Int J Curr Pharm Res 2017;9(1):15-19.
- 20) Patel B. M, Kuchekar A. B, Pawar S. R. Emulgel Approach to Formulation Development: A Review. Biosci Biotech Res Asia 2021;18(3).
- 21) Mathew N J, Mathew F, Eldhouse M P, "Emulgel- A Formulation for Topical Delivery of Hydrophobic Drugs, International Journal of Universal Pharmacy and BioScience, 2016,102-114.
- 22) Ashara K C, Paun J S, Soniwala M M, Chavada J R, Mori N M, "Micro- Emulgel based Emulgel: A Novel Topical Drug Delivery System, Asian Pacific Journal of Tropical Disease 2014, S28.